Current Issue : January-March Volume : 2025 Issue Number : 1 Articles : 5 Articles
The mechanical systems were modeled using various combinations of mass-damper-spring elements to analyze the system dynamics and improve the system stability. Due to the marginal stability property of the mass-damper rectilinear system, a proper control law is required to control the mass position accurately, improve the relative stability, and enhance the dynamical response. In this paper, a mathematical model of the electromechanical system was first derived and analyzed. Next, a digital PID controller was developed based on the root locus technique, and a systematic design procedure is presented in detail. The proposed digital control system was simulated in MATLAB and compared with other control schemes to check their tracking performance and transient response characteristics. In addition, the digital PID control algorithm of the mass-damper rectilinear system was implemented via dSPACE platform to investigate the real-time control system performance and validate the control design methodology. It has been shown that the digital PID controller yields zero percentage overshoot, fast transient response, adequate stability margins, and zero steady-state error....
The microbial fuel cell (MFC) is a renewable energy technology that utilizes the oxidative decomposition processes of anaerobic microorganisms to convert the chemical energy in organic matter, such as wastewater, sediments, or other biomass, into electrical power. This technology is not only applicable to wastewater treatment but can also be used for resource recovery from various organic wastes. The MFC usually requires an external controller that allows it to operate under controlled conditions to obtain a stable output voltage. Therefore, the application of a PID controller to the MFC is proposed in this paper. The design phase for this controller involves the identification of three parameters. Although the particle swarm optimization (PSO) algorithm is an advanced optimization algorithm based on swarm intelligence, it suffers from issues such as unreasonable population initialization and slow convergence speed. Therefore, this paper proposes an improved particle swarm algorithm based on the Golden Sine Strategy (GSCPSO). Using Circle chaotic mapping to make the distribution of the initial population more uniform, and then using the Golden Sine Strategy to improve the position update formula, not only improves the convergence speed of the population but also enhances convergence precision. The GSCPSO algorithm is applied to execute the described design process. The results of the simulation show that the designed control method exhibits smaller steady-state error, overshoot, and chattering compared with sliding-mode control (SMC), backstepping control, fuzzy SMC (FSMC), PSO-PID, and CPSO-PID....
The challenge regarding the output voltage regulation control of quasi-resonant converters while concurrently fulfilling zero-current switching is addressed in this study. In particular, an alternative to the usual practice of considering fixed duty cycle operation is presented to deal with the narrow robustness margin against load variations exhibited by this condition. The main contribution was the introduction of an additional block in the control loop that implements a new linear relationship between the duty cycle and the switching frequency in terms of the load current. This block proportionally modifies the duty cycle with the switching frequency that, as usual, is used to regulate the output voltage. The structure of the contribution was obtained by exploiting the knowledge of the differential equations that describe the dynamical behavior of the topology. Although it was shown that this modification could be used regardless of the control scheme implemented for the operation of the converter, its usefulness was illustrated by presenting a modified implementation of a classical PI control scheme. It was shown via numerical evaluations that the robustness of the converter under classical PI control was drastically improved for both increases and decreases in the load value. From the implementation perspective, this contribution is attractive since it exhibits a simple structure and neither requires the use of auxiliary switches nor increases the cost of current solutions....
In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics are utilized to adaptively estimate the deadzone parameter and a switching function is designed to eliminate the error produced in the adaptive observer dynamics. The overall design of the closed loop system ensures stability in the BIBO criterion....
A PID-inspired accelerated distributed optimal control algorithm is proposed for the economic dispatch problem of a multi-bus DC microgrid, which contains both conventional generators (CGs) and renewable generators (RGs). Firstly, a constrained optimization problem with the aim of minimizing the power generation cost of the DC microgrid is established. To solve the optimization problem, an accelerated distributed optimal control algorithm in the discrete-time domain is proposed. The convergence speed of the proposed algorithm is significantly improved compared to the existing distributed optimization algorithms without acceleration terms. More importantly, the communication cost is greatly reduced. The proposed algorithm is in a fully distributed manner, which means each controller only relies on the limited information from neighbouring controllers to achieve optimal cooperative control and bus voltage regulation across multiple buses. Finally, the effectiveness of the proposed algorithm is validated through numerical simulations....
Loading....